题目列表(包括答案和解析)
下列命题中正确的有
①设有一个回归方程
=2—3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“
”的否定
P:“
”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(-1<X<0)=
-p;
④在一个2×2列联表中,由计算得k2=6.679,则有99%的把握确认这两个变量间有关系.
| A.1个 | B.2个 | C.3个 | D.4个 |
| P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
函数f(x)=(x-5)0+(x-2)
的定义域是( )
A.{x|x∈R,且x≠5,x≠2}
B.{x|x>2}
C.{x|x>5}
D.{x|2<x<5或x>5}
已知
.
(1)求
的单调区间;
(2)证明:当
时,
恒成立;
(3)任取两个不相等的正数
,且
,若存在
使
成立,证明:
.
【解析】(1)g(x)=lnx+
,
=![]()
(1’)
当k
0时,
>0,所以函数g(x)的增区间为(0,+
),无减区间;
当k>0时,
>0,得x>k;
<0,得0<x<k∴增区间(k,+
)减区间为(0,k)(3’)
(2)设h(x)=xlnx-2x+e(x
1)令
= lnx-1=0得x=e, 当x变化时,h(x),
的变化情况如表
|
x |
1 |
(1,e) |
e |
(e,+ |
|
|
|
- |
0 |
+ |
|
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)
0, ∴f(x)
2x-e
(5’)
设G(x)=lnx-
(x
1)
=
=![]()
0,当且仅当x=1时,
=0所以G(x) 为减函数, 所以G(x)
G(1)=0, 所以lnx-![]()
0所以xlnx![]()
(x
1)成立,所以f(x) ![]()
,综上,当x
1时, 2x-e
f(x)![]()
恒成立.
(3) ∵
=lnx+1∴lnx0+1=
=
∴lnx0=
-1
∴lnx0 –lnx
=
-1–lnx
=
=
=
(10’) 设H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t)
<H(1)=0∵
∴
=![]()
∴lnx0 –lnx
>0, ∴x0 >x![]()
设集合A={x|x2-2x-8<0},B={x|2x+1>5},则
( )
A.{x|-2<x<4} B.{x|x>2} C.{x|2<x<4} D.{x|x>4}
下列命题中正确的是( )
①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.
A.只有①和④ B.只有②和③
C.只有② D.以上命题都不对
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com