8.把=3x的反函数图象向右平移2个单位就得到曲线C.函数的图象与曲 线C关于成轴对称.那么等于 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

的反函数图象向右平移2个单位就得到曲线C,函数的图象与曲线C关于成轴对称,那么等于

[  ]

A.
B.
C.
D.

查看答案和解析>>

已知函数f(x)=sin(π-
ωx
2
)cos
ωx
2
+cos2
ωx
2
-
1
2
,(ω>0)
(1)若函数y=f(x)的周期为π,将函数y=f(x)的图象上各点的横坐标缩短为原来的
1
2
倍(纵坐标不变),再把所得的函数图象向右平移
π
8
个单位得到函数y=g(x)的图象,求y=g(x)解析式,并求其对称中心.
(2)若函数y=f(x)在[
π
2
,π]上是减函数,求ω的取值范围.

查看答案和解析>>

已知函数f(x)=sin(π-)cos+cos2,(ω>0)
(1)若函数y=f(x)的周期为π,将函数y=f(x)的图象上各点的横坐标缩短为原来的倍(纵坐标不变),再把所得的函数图象向右平移个单位得到函数y=g(x)的图象,求y=g(x)解析式,并求其对称中心.
(2)若函数y=f(x)在[,π]上是减函数,求ω的取值范围.

查看答案和解析>>

已知函数f(x)=sin(π-
ωx
2
)cos
ωx
2
+cos2
ωx
2
-
1
2
,(ω>0)
(1)若函数y=f(x)的周期为π,将函数y=f(x)的图象上各点的横坐标缩短为原来的
1
2
倍(纵坐标不变),再把所得的函数图象向右平移
π
8
个单位得到函数y=g(x)的图象,求y=g(x)解析式,并求其对称中心.
(2)若函数y=f(x)在[
π
2
,π]上是减函数,求ω的取值范围.

查看答案和解析>>

(2007•金山区一模)(1)已知平面上两定点A(-2,0)、B(2,0),且动点M的坐标满足
MA
MB
=0,求动点M的轨迹方程;
(2)若把(1)的M的轨迹图象向右平移一个单位,再向下平移一个单位,恰与直线x+ky-3=0 相切,试求实数k的值;
(3)如图1,l是经过椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
长轴顶点A且与长轴垂直的直线,E、F是两个焦点,点P∈l,P不与A重合.若∠EPF=α,证明:0<α≤arctan
c
b
.类比此结论到双曲线
x2
a2
-
y2
b2
=1
,l是经过焦点F且与实轴垂直的直线,A、B是两个顶点,点P∈l,P不与F重合(如图2).若∠APB=α,试求角α的取值范围.

查看答案和解析>>


同步练习册答案