4.已知函数f(x)=(x2+)(x+a)(aR) 的图象上有与x轴平行的切线.求a的范围, (2)若的单调区间, (II)证明对任意的x1.x2,不等式|f(x1)-f(x2)|<恒成立. 解:. ⑴ 函数的图象有与轴平行的切线.有实数解 .. 所以的取值范围是 ⑵... (Ⅰ)由或,由 的单调递增区间是,单调减区间为 (Ⅱ)易知的最大值为.的极小值为.又 在上的最大值.最小值 对任意.恒有 查看更多

 

题目列表(包括答案和解析)

19、已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1,则
①否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1,”,是真命题;
②逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题;
③逆否命题是“若m>1,则函数在f(x)=ex-mx(0,+∞)上是减函数”,是真命题;
④逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题.
其中正确结论的序号是
.(填上所有正确结论的序号)

查看答案和解析>>

(2012•江西模拟)已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.试用这个结论证明:若-1<x1<x2,函数g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

 

(理)已知数列{an}的前n项和,且=1,

.

(I)求数列{an}的通项公式;

(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有

< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;

(III)求证:≤bn<2.

(文)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.

(I)求点M的轨迹方程;

(II)若过B点且斜率为- 的直线与轨迹M交于

         点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为

         锐角三角形时t的取值范围.

 

 

 

 

查看答案和解析>>

(本题满分14分)

(理)已知数列{an}的前n项和,且=1,

.(I)求数列{an}的通项公式;

(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有

< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;

(III)求证:≤bn<2.

 

查看答案和解析>>

(本题满分14分)

(理)已知数列{an}的前n项和,且=1,

.

(I)求数列{an}的通项公式;

(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有

< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;

(III)求证:≤bn<2.

 

查看答案和解析>>


同步练习册答案