设数列是正数组成的数列.其前n项和为.并且对于所有的自然数n.与2的等差中项等于与2的等比中项. (1) 写出数列的前三项. (2) 求数列的通项公式. (3) 令.求. 解析:(1)由题意: (2). (3) 故 点评:(1)已知数列的前项和与通项的关系时.最好是先转化为递推公式.然后在由递推公式求通项公式.当然.此题也可直接求出前三项.然后猜测通项公式.并用数学归纳法证明. (2)本题的数列求和采用的是裂项求和法. 查看更多

 

题目列表(包括答案和解析)

设{an}是正数组成的数列,其前n项的和为Sn,并且对于所有的自然数n,存在正数t,使an与t的等差中项等于Sn与t的等比中项.
(1)求 {an}的通项公式;
(2)若n=3时,Sn-2t•an取得最小值,求t的取值范围.

查看答案和解析>>

(2013•烟台一模)设{an}是正数组成的数列,a1=3.若点(an,an+12-2an+1)(n∈N*)在函数f(x)=
1
3
x3+x2
-2的导函数y=f′(x)图象上.
(1)求数列{an}的通项公式;
(2)设bn=
2
an+1an
,是否存在最小的正数M,使得对任意n∈N*都有b1+b2+…+bn<M成立?请说明理由.

查看答案和解析>>

已知函数f(x)=
13
x3+x2-2

(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.

查看答案和解析>>

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求{bn}的前20项和T20

查看答案和解析>>

设{an}是正数组成的数列,前n项和为Snan=2
2Sn
-2

(Ⅰ)写出数列{an}的前三项;
(Ⅱ)求数列{an}的通项公式,并写出推证过程;
(Ⅲ)令bn=
4
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>


同步练习册答案