若奇函数的定义域为.则有 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)的定义域为D,若存在x0∈D,使得y0=f(x0)=x0,则称以(x0,y0)为坐标的点为函数图象上的不动点.

(1)若函数f(x)=的图象上有两个关于原点对称的不动点,求a、b满足的条件;

(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、A′,P为函数f(x)的图象上的另一点,且其纵坐标yP>3,求点P到直线AA′距离的最小值及取得最小值时点P的坐标.

(3)命题“若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,试给予证明,并举出一例;若不正确,试举一反例说明.

查看答案和解析>>

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是(  )
A、[-1,1]B、(-1,1)C、[-2,2]D、(-2,2)

查看答案和解析>>

设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为“倍约束函数”.现给出下列函数:
①f(x)=2x;   
②f(x)=sinx+cosx;
③f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|;
f(x)=
0当x∈[-1,1] 时
ln|x|当x∈(-∞ -1)∪(1,+∞) 时

其中是“倍约束函数”的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

设函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+ax+b
图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.

查看答案和解析>>

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x2为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为(  )

查看答案和解析>>


同步练习册答案