平面内动点M与点所成直线的斜率分别为k1.k2.且满足 (Ⅰ)求点M的轨迹E的方程.并指出E的曲线类型, (Ⅱ)设直线:分别交x.y轴于点A.B.交曲线E于点C.D.且|AC|=|BD|.(1)求k的值,(2)若点.求△NCD面积取得最大时直线l的方程. 查看更多

 

题目列表(包括答案和解析)

平面内动点M与点P1(-2,0),P2(2,0)所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(1)求点M的轨迹E的方程,并指出E的曲线类型;
(2)设直线l:y=kx+m(k>0,m≠0)分别交x、y 轴于点A、B,交曲线E于点C、D,且|AC|=|BD|,N(
2
,1)
求k的值及△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足
(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点,求△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0)所成直线的斜率分别为k1、k2,且满足
(1)求点M的轨迹E的方程,并指出E的曲线类型;
(2)设直线l:y=kx+m(k>0,m≠0)分别交x、y 轴于点A、B,交曲线E于点C、D,且|AC|=|BD|,求k的值及△NCD面积取得最大时直线l的方程.

查看答案和解析>>

记平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于常数m(其中m<0)的动点B的轨迹,加上A1,A2两点所构成的曲线为C
(I)求曲线C的方程,并讨论C的形状与m的值的关系;
(Ⅱ)当m=时,过点F(1,0)且斜率为k(k#0)的直线l1交曲线C于M.N两点,若弦MN的中点为P,过点P作直线l2交x轴于点Q,且满足.试求的取值范围.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点N(
2
,1)
,求△NCD面积取得最大时直线l的方程.

查看答案和解析>>


同步练习册答案