设事件A发生的概率为P.若在A发生的条件下B发生的概率为P/.则由A产生B的概率为PP/.根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0.1.2.3.-.100.共101站.设棋子跳到第站的概率为.一枚棋子开始在第0站(即).由棋手每掷一次硬币.棋子向前跳动一次.若硬币出现正面则棋子向前跳动一站.出现反面则向前跳动两站.直到棋子跳到第99站时.游戏结束.已知硬币出现正反面的概率都为. ⑴ 求.并根据棋子跳到第站的情况.试用表示, ⑵ 设.求证:数列是等比数列.并求出的通项公式, ⑶ 求玩该游戏获胜的概率 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:


其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

     (ⅰ)用零件的编号列出所有可能的抽取结果;

     (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

      (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

      (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

      所以P(B)=.

(本小题满分12分)

如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求异面直线CE与AF所成角的余弦值;      

(Ⅱ)证明CD⊥平面ABF;

查看答案和解析>>

(本小题满分12分)

设函数,其中是某范围内的随机数,分别在下列条件下,求事件A”发生的概率.

 (Ⅰ)若随机数

    (Ⅱ)已知随机函数产生的随机数的范围为, 是算法语句的执行结果.(注: 符号“”表示“乘号”)

 

查看答案和解析>>

(本小题满分12分)

设平面向量= ( m , -1), = ( 2 , n ),其中 mn {-2,-1,1,2}.

(1)记“使得//成立的( mn )”为事件A,求事件A发生的概率;

(2)记“使得⊥(-2)成立的( mn )”为事件B,求事件B发生的概率.

 

查看答案和解析>>

(本小题满分12分)设平面向量=(m,1), =(2,n),其中m,n∈{1,2,3,4}.

(Ⅰ)请列出有序数组(m,n)的所有可能结果;

(Ⅱ)若“使得⊥()成立的(m,n)”为事件A,求事件A发生的概率。

 

查看答案和解析>>


同步练习册答案