(1)椭圆C的方程为.焦点F1.F2(1,0), (2) ,(3)定值为 查看更多

 

题目列表(包括答案和解析)

已知椭圆C的方程为,椭圆C的左、右焦点分别为F1(-1,0)、F2(1,0),斜率为k(k≠0)的直线l经过点F2,交椭圆于A、B两点,且△ABF1的周长为8,
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点E为x轴上一点,(λ∈R),若,求点E的坐标。

查看答案和解析>>

已知椭圆C的方程为,椭圆C的左、右焦点分别为F1(-1,0)、F2(1,0),斜率为k(k≠0)的直线l经过点F2,交椭圆于A、B两点,且△ABF1的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点E为x轴上一点,(λ∈R),若,求点E的坐标.

查看答案和解析>>

精英家教网已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,点A、B分别为其左、右顶点,点F1、F2分别为其左、右焦点,以点A为圆心,AF1为半径作圆A;以点B为圆心,OB为半径作圆B;若直线l: y=-
3
3
x
被圆A和圆B截得的弦长之比为
15
6

(1)求椭圆C的离心率;
(2)己知a=7,问是否存在点P,使得过P点有无数条直线被圆A和圆B截得的弦长之比为
3
4
;若存在,请求出所有的P点坐标;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,椭圆C的左、右焦点分别为F1(-1,0)、F2(1,0),斜率为k(k≠0)的直线l经过点F2,交椭圆于A、B两点,且△ABF1的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点E为x轴上一点,
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求点E的坐标.

查看答案和解析>>

已知椭圆C的两个焦点为F1(-2
2
,0)
F2(2
2
,0)
,P为椭圆上一点,满足∠F1PF2=60°.
(1)当直线l过F1与椭圆C交于M、N两点,且△MF2N的周长为12时,求C的方程;
(2)求△F1PF2的面积.

查看答案和解析>>


同步练习册答案