解.B得直线AB即直线MN方程为y=x+3.代入椭圆C1的方程并整理.得(a2+b2)x2+6a2x+9a2-a2b2=0 (*) 设M(x1,y1).N(x2,y2).则 x1+x2=- ∵A是弦MN的中点.∴x1+x2=-4.故由得a2=2b2, 又b2=a2-c2.∴a=.从而椭圆离心率e1=. ∵A为C2的焦点.且相应准线l方程为.即.过B作BB0⊥l于B0.则由双曲线定义知.e2=. 法二:设M(x1.y1),N(x2,y2),则x1+x2=4.y1+y2=2,且 . 查看更多

 

题目列表(包括答案和解析)

现在小型轿车慢慢进入百姓家庭,但是另一个问题相继暴露出来--堵车.李先生居住在城市的A处,准备开车到B处上班,若该地各路段发生堵车事件是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图所示(例如A→C→D并作两个路段:路段AC发生堵车事件的概率是
1
10
,路段CD发生堵车事件概率是
1
15
).
(1)请你为李先生选择一条由A到B的路线,使得沿途经过的路口尽可能少,且发生堵车的概率最小;
(2)若该路线A→C→F→B中遇到堵车的次数为随机变量X,求X的数学期望.

查看答案和解析>>

某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率,如图.( 例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为
1
10
,路段CD发生堵车事件的概率为
1
15
).
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;
(2)若记ξ路线A→(3)C→(4)F→(5)B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.

查看答案和解析>>

精英家教网某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如如图所示.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为
1
10
,路段CD发生堵车事件的概率为
1
15
).
(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量X,求X的概率分布.

查看答案和解析>>

精英家教网某人居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为
1
5
,路段CD发生堵车事件的概率为
1
8

(1)请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望Eξ.

查看答案和解析>>

某先生居住在城镇的A处,准备开车到单位B处上班,若该地路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为).

(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;

(2)若记路线A→C→F→B中遇到堵车次数为随机变量ξ,求ξ的数学期望.

查看答案和解析>>


同步练习册答案