17.依题意有.+=.= . ===1.----..3分 ..从而. . 故..----..6分 即方程的两个实根均在内. 设. 则函数与轴有两个交点.且交点在内, 又函数的图象是开口向上的抛物线.且对称轴方程为. 故其图象满足 即----..9分 解之.得. 故所求的范围是.----..12分 查看更多

 

题目列表(包括答案和解析)

意大利数学家斐波那契(L.Fibonacci)在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可长成大兔子,如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?

我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列:

1,1,2,3,5,8,13,21,34,55,89,144,233,……

这就是斐波那契数列,此数列中a1=a2=1,你能归纳出当n≥3时an的递推关系式吗?

查看答案和解析>>

意大利数学家斐波那契(L.Fibonacci)在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可长成大兔子.如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢?

我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列:

1,1,2,3,5,8,13,21,34,55,89,144,233,….

这就是斐波那契数列,此数列中a1=a2=1,你能归纳出,当n≥3时an的递推关系式吗?

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

解答题

已知等差数列的首项为a,公差为b;等比数列的首项为b,公比为a,其中a,b∈N+,且a1<b1<a2<b2<a3

(1)

a的值;

(2)

若对于任意n∈N+,总存在m∈N+,使am+3=bn,求b的值;

(3)

在(2)中,记{cn}是所有{an}中满足am+3=bn,m∈N+的项从小到大依次组成的数列,又记Sn为{cn}的前n项和,Tn是{an}的前n项和,求证:(n∈N+).

查看答案和解析>>

下列推理是否正确,将有错误的指出错误之处.

(1)求证:四边形的内角和等于360°.

证明:设四边形ABCD为矩形,则四个角都是直角.

∴∠A+∠B+∠C+D=90°+90°+90°+90°=360°.

∴四边形的内角和为360°.

(2)已知是无理数,试证:也是无理数.

证明:依题意知都是无理数,而无理数与无理数的和是无理数,所以也必是无理数.

(3)在Rt△ABC中,∠C=90°,求证:a2+b2=c2

证明:∵a=csinA,b=ccosA,

∴a2+b2=c2sin2A+c2cos2A=c2(sin2A+cos2A)=c2

查看答案和解析>>


同步练习册答案