题目列表(包括答案和解析)
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
| x |
| 2 |
| π |
| 2 |
| 2 |
| 2 |
| x2 |
| m |
| y2 |
| 8 |
|
已知函数
,
.
(Ⅰ)若函数
和函数
在区间
上均为增函数,求实数
的取值范围;
(Ⅱ)若方程
有唯一解,求实数
的值.
【解析】第一问,
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数
(Ⅱ)中方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解得到结论。
(Ⅰ)解:
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数 ……………6分
(Ⅱ)方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解
| x |
| 2 |
| π |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com