题目列表(包括答案和解析)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知椭圆
的方程为
,
、
和
为
的三个顶点.
(1)若点
满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)设点
在椭圆
内且不在
轴上,如何构作过
中点
的直线
,使得
与椭圆
的两个交点
、
满足
?令
,
,点
的坐标是(-8,-1),若椭圆
上的点
、
满足
,求点
、
的坐标.
本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
若实数
、
、
满足
,则称
比
接近
.
(1)若
比3接近0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
接近
;
(3)已知函数
的定义域
.任取
,
等于
和
中接近0的那个值.写出函数
的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列
中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列
是一个首项为
、公差为![]()
的无穷等差数列.
(1)若
,
,
成等比数列,求其公比
.
(2)若
,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若
,从数列
中取出第1项、第![]()
项(设
)作为一个等比数列的第1项、第2项.求证:当
为大于1的正整数时,该数列为
的无穷等比子数列.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆
:
(
),其左、右焦点分别为
、
,且
、
、
成等比数列.
(1)求
的值.
(2)若椭圆
的上顶点、右顶点分别为
、
,求证:
.
(3)若
为椭圆
上的任意一点,是否存在过点
、
的直线
,使
与
轴的交点
满足
?若存在,求直线
的斜率
;若不存在,请说明理由.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列
中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列
是一个首项为
、公差为![]()
的无穷等差数列.
(1)若
,
,
成等比数列,求其公比
.
(2)若
,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若
,从数列
中取出第1项、第![]()
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com