题目列表(包括答案和解析)
函数
在同一个周期内,当
时,
取最大值1,当
时,
取最小值
。
(1)求函数的解析式![]()
(2)函数
的图象经过怎样的变换可得到
的图象?
(3)若函数
满足方程
求在
内的所有实数根之和.
【解析】第一问中利用![]()
又因![]()
又
函数![]()
第二问中,利用
的图象向右平移
个单位得
的图象
再由
图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
第三问中,利用三角函数的对称性,
的周期为![]()
在
内恰有3个周期,
并且方程
在
内有6个实根且![]()
同理,
可得结论。
解:(1)![]()
又因![]()
又
函数![]()
(2)
的图象向右平移
个单位得
的图象
再由
图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
(3)
的周期为![]()
在
内恰有3个周期,
并且方程
在
内有6个实根且![]()
同理,![]()
故所有实数之和为![]()
设函数
.
(Ⅰ) 当
时,求
的单调区间;
(Ⅱ) 若
在
上的最大值为
,求
的值.
【解析】第一问中利用函数
的定义域为(0,2),
.
当a=1时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数
的定义域为(0,2),
.
(1)当
时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
已知函数
,
.
(Ⅰ)若函数
依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在
处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数
,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
![]()
(2)不等式
,即
,即
.
转化为存在实数
,使对任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
设
,则.![]()
设
,则
,因为
,有
.
故
在区间
上是减函数。又![]()
故存在
,使得
.
当
时,有
,当
时,有
.
从而
在区间
上递增,在区间
上递减.
又
[来源:]
![]()
所以当
时,恒有
;当
时,恒有![]()
;
故使命题成立的正整数m的最大值为5
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
已知函数
,其中
.
(1)若
在
处取得极值,求曲线
在点
处的切线方程;
(2)讨论函数
在
的单调性;
(3)若函数
在
上的最小值为2,求
的取值范围.
【解析】第一问,
因
在
处取得极值
所以,
,解得
,此时
,可得求曲线
在点
处的切线方程为:![]()
第二问中,易得
的分母大于零,
①当
时,
,函数
在
上单调递增;
②当
时,由
可得
,由
解得![]()
第三问,当
时由(2)可知,
在
上处取得最小值
,
当
时由(2)可知
在
处取得最小值
,不符合题意.
综上,函数
在
上的最小值为2时,求
的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com