利用圆锥曲线的定义.把到焦点的距离转化为到准线的距离 例6 点A(3.2)为定点.点F是抛物线的焦点.点P在抛物线 上移动.若取得最小值.求点P的坐标. 解:抛物线的准线方程为.设P到准线的距离为.则 =.要使取得最小值.由图3可知过A点的直线与准线垂直时. 取得最小值.把代入.得P(1.2). 查看更多

 

题目列表(包括答案和解析)

在圆锥曲线的学习中,我们已经学习了它的标准方程,以椭圆=1(a>b>0)为例说明此方程就是以F1(-c,0),F2(c,0)为焦点,长轴长为2a的椭圆的方程.怎样利用曲线与方程的定义说明上述问题?

查看答案和解析>>

已知抛物线y2=2px(p>0),点P(m,n)为抛物线上任意一点,其中m≥0.
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题.

查看答案和解析>>

已知曲线C:f(x)=x3
(1)利用导数的定义求f(x)的导函数f′(x);
(2)求曲线C上横坐标为1的点处的切线方程.

查看答案和解析>>

有如下4个关于圆锥曲线的命题:

①-1<λ<1是方程=1表示椭圆的充要条件;

②λ<-1是方程=1表示双曲线的一个充分条件;

③双曲线=1(a>0,b>0),=1(a>0,b>0)有共同的渐近线;

④双曲线=1(a>0,b>0)是等轴双曲线的充要条件是离心率为,其中正确命题的序号有_______________(把所有正确命题序号都填上).

查看答案和解析>>

(12分)圆、椭圆、双曲线都有对称中心,统称为有心圆锥曲线,它们统一的标准方程为.圆的很多优美性质可以类比推广到有心圆锥曲线中,如圆的“垂径定理”的逆定理:圆的平分弦(不是直径)的直径垂直于弦. 类比推广到有心圆锥曲线:已知直线与曲线交于两点,的中点为,若直线(为坐标原点)的斜率都存在,则.这个性质称为有心圆锥曲线的“垂径定理”.

(Ⅰ)证明有心圆锥曲线的“垂径定理”;

(Ⅱ)利用有心圆锥曲线的“垂径定理”解答下列问题:

①     过点作直线与椭圆交于两点,求的中点的轨迹的方程;

②     过点作直线与有心圆锥曲线交于两点,是否存在这样的直线使点为线段的中点?若存在,求直线的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案