利用直角坐标系.可以把直角三角形中的三角函数推广到任意角的三角数.三角函数定义是本章重点.从它可以推出一些三角公式.重视用数学定义解题. 设P(x.y)是角α终边上任一点.记.则.... 利用三角函数定义.可以得到(1)诱导公式:即与α之间函数值关系.其规律是“奇变偶不变.符号看象限 ,(2)同角三角函数关系式:平方关系.倒数关系.商数关系. 查看更多

 

题目列表(包括答案和解析)

下列判断中不正确的是

A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系

B.在平面直角坐标系中,可以用散点图发现变量之间的变化规律

C.线性回归方程代表了观测值x、y之间的关系

D.任何一组观测值都能得到具有代表意义的回归直线方程

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换
(Ⅰ)求复合变换的坐标变换公式;
(Ⅱ)求圆在复合变换的作用下所得曲线的方程.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为为参数),分别为直线轴、轴的交点,线段的中点为
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.
(3)(本小题满分7分)选修4—5:不等式选讲
已知不等式的解集与关于的不等式的解集相等.
(Ⅰ)求实数的值;
(Ⅱ)求函数的最大值,以及取得最大值时的值.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4—2:矩阵与变换

在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换

(Ⅰ)求复合变换的坐标变换公式;

(Ⅱ)求圆在复合变换的作用下所得曲线的方程.

(2)(本小题满分7分)选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),分别为直线轴、轴的交点,线段的中点为

(Ⅰ)求直线的直角坐标方程;

(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.

(3)(本小题满分7分)选修4—5:不等式选讲

已知不等式的解集与关于的不等式的解集相等.

(Ⅰ)求实数的值;

(Ⅱ)求函数的最大值,以及取得最大值时的值.

 

查看答案和解析>>

(2010•台州一模)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为
n
=(1,-2)
的直线(点法式)方程为1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0. 类比以上方法,在空间直角坐标系中,经过点A(3,4,5),且法向量为
n
=(2,1,3)
的平面(点法式)方程为
2x+y+3z-21=0
2x+y+3z-21=0
(请写出化简后的结果).

查看答案和解析>>

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为
n
=(1,-2)
的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为
n
=(-1,-2,1)
的平面方程为
 

查看答案和解析>>