直线和圆锥曲线位置关系. 查看更多

 

题目列表(包括答案和解析)

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

已知抛物线,过M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,

    (1)求a的取值范围;

    (2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

    分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值。

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

直线和圆锥曲线的位置关系问题是几何中最常见的问题,对于普通方程,可以把它们的方程联立,根据方程组解的情况来判断交点情况.那么对于参数方程,又该如何判断它们的交点情况呢?

查看答案和解析>>

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-4:坐标系与参数方程

 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆为圆心、为半径。

(I)求直线的参数方程和圆的极坐标方程;

(II)试判定直线和圆的位置关系.

(2)(本小题满分7分)选修4-4:矩阵与变换

把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.

(3)(本小题满分7分)选修4-5:不等式选讲

关于的一元二次方程对任意无实根,求实数的取值范围.

 

查看答案和解析>>


同步练习册答案