上一章已经复习过解析几何的基本问题之一:如何求曲线方程.它一般分为两类基本题型:一是已知轨迹类型求其方程.常用待定系数法.如求直线及圆的方程就是典型例题,二是未知轨迹类型.此时除了用代入法.交轨法.参数法等求轨迹的方法外.通常设法利用已知轨迹的定义解题.化归为求已知轨迹类型的轨迹方程.因此在求动点轨迹方程的过程中.一是寻找与动点坐标有关的方程.侧重于数的运算.一是寻找与动点有关的几何条件.侧重于形.重视图形几何性质的运用. 在基本轨迹中.除了直线.圆外.还有三种圆锥曲线:椭圆.双曲线.抛物线.2.三种圆锥曲线的研究 (1)统一定义.三种圆锥曲线均可看成是这样的点集:.其中F为定点.d为P到定直线的距离.F.如图. 因为三者有统一定义.所以.它们的一些性质.研究它们的一些方法都具有规律性. 当0<e<1时.点P轨迹是椭圆,当e>1时.点P轨迹是双曲线,当e=1时.点P轨迹是抛物线. (2)椭圆及双曲线几何定义:椭圆:{P||PF1|+|PF2|=2a.2a>|F1F2|>0.F1.F2为定点}.双曲线{P|||PF1|-|PF2||=2a.|F1F2|>2a>0.F1.F2为定点}. (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的.固有的性质.不因为位置的改变而改变. ①定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点.两准线关于中心对称,椭圆及双曲线关于长轴.短轴或实轴.虚轴成轴对称.关于中心成中心对称. ②定量: 椭 圆 双 曲 线 抛 物 线 焦 距 2c 长轴长 2a -- 实轴长 -- 2a 短轴长 2b 焦点到对应 准线距离 P=2 p 通径长 2· 2p 离心率 1 基本量关系 a2=b2+c2 C2=a2+b2 (4)圆锥曲线的标准方程及解析量 举焦点在x轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 y2=2px 顶 点 (0.0) 焦 点 (.0) 准 线 X=± x= 中 心 (0.0) 有界性 |x|≤a |y|≤b |x|≥a x≥0 焦半径 P(x0.y0)为圆锥曲线上一点.F1.F2分别为左.右焦点 |PF1|=a+ex0 |PF2|=a-ex0 P在右支时: |PF1|=a+ex0 |PF2|=-a+ex0 P在左支时: |PF1|=-a-ex0 |PF2|=a-ex0 |PF|=x0+ 总之研究圆锥曲线.一要重视定义.这是学好圆锥曲线最重要的思想方法.二要数形结合.既熟练掌握方程组理论.又关注图形的几何性质.以简化运算. 查看更多

 

题目列表(包括答案和解析)

下面是水稻产量与施化肥量的一组观测数据:

施化肥量 15 20 25 30 35 40 45

水稻产量 320 330 360 410 460 470 480

(1)将上表中的数据制成散点图;

(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?

(3)若近似成线性关系,请画出一条直线来近似表示这种线性关系;

(4)若施化肥量为50个单位,请预测水稻产量.

查看答案和解析>>

在一小时内观测电话用户对电话站的呼唤次数,按每分钟统计得到数据如下:

0 0 1 2 1 2 2 3 4 1

0 1 2 5 3 1 2 2 2 4

2 4 3 1 1 3 2 3 4 6

1 2 0 2 3 1 3 1 4 1

1 2 0 2 3 4 2 5 0 2

1 1 0 3 2 1 3 1 2 0

(1)写出一分钟内电话呼唤次数的频率分布表;

(2)画出频率分布图及累积频率分布图.

查看答案和解析>>

某大楼共有16层,有15人在第一层上了电梯,他们分别到第2至16层,每层一人,而电梯只允许停一次,可知只能使一个人满意,其余14人都要步行上楼或下楼,假设乘客下一层的不满意度为1,上一层的不满意度为3,则所有人不满意度之和最小时,电梯应当停在第(    )

A.10层 B.11层 C.12层 D.13层

查看答案和解析>>

同时抛掷两个骰子,计算:

(1)朝上一面上的数相同的概率;(2)朝上一面上的数之积为偶数的概率.

查看答案和解析>>

同时抛掷两个骰子,计算:

(1)朝上一面上的数相同的概率;(2)朝上一面上的数之积为偶数的概率.

查看答案和解析>>


同步练习册答案