为抛物线内一点过A作直线交抛物线于P.Q.A恰为PQ中点求的方程. 查看更多

 

题目列表(包括答案和解析)

对抛物线C:x2=4y,有下列命题:
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是
①②④
①②④

查看答案和解析>>

对抛物线C:x2=4y,有下列命题:
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是______.

查看答案和解析>>

对抛物线C:x2=4y,有下列命题:
①设直线l:y=kx+l,则直线l被抛物线C所截得的最短弦长为4;
②已知直线l:y=kx+l交抛物线C于A,B两点,则以AB为直径的圆一定与抛物线的准线相切;
③过点P(2,t)(t∈R)与抛物线有且只有一个交点的直线有1条或3条;
④若抛物线C的焦点为F,抛物线上一点Q(2,1)和抛物线内一点R(2,m)(m>1),过点Q作抛物线的切线l1,直线l2过点Q且与l1垂直,则l2一定平分∠RQF.
其中你认为是真命题的所有命题的序号是   

查看答案和解析>>

已知抛物线方程C:y2=2px(p>0),点F为其焦点,点N(3,1)在抛物线C的内部,设点M是抛物线C上的任意一点,|
MF
|+|
MN
|
的最小值为4.
(1)求抛物线C的方程;
(2)过点F作直线l与抛物线C交于不同两点A、B,与y轴交于点P,且
PF
=λ1
FA
=λ2
FB
,试判断λ12是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.

查看答案和解析>>

已知抛物线y2=4x内一点P,过点P的直线l交该抛物线于点A,B,使P恰好成为弦AB的中点。
(1)求直线l的方程;
(2)若过弦AB上任一点P0(不含端点A、B)作斜率为-2的直线l1交抛物线于C,D两点,求证:|P0A|·|P0B|=|P0C|·|P0D|;
(3)过弦AB上任一点P0(不含端点A、B)作斜率分别为k1,k2(k1≠k2)的直线l1,l2,直线l1交抛物线于点A1,B1,直线l2交抛物线于点A2,B2,若|P0A1|·|P0B1|=|P0A2|·|P0B2|,求k1+k2的值。

查看答案和解析>>


同步练习册答案