=2ax3+3bx2+2abx且,求ab=1时.f(x)的解析式. (2)已知曲线y=ax4+bx3+cx+1关于点处的切线斜率为1.求a.b.c. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=x3+3bx2+3(b2-1)x+3c有两个极值点x1、x2,且x1∈(-1,2),x2∈(2,+∞),则实数b的取值范围是(  )

查看答案和解析>>

已知函数f(x)=x3+3bx2+cx+d在(-∞,0)上是增函数,在(0,2)上是减函数,且f(x)=0的一个根为-b
(Ⅰ)求c的值;
(Ⅱ)求证:f(x)=0还有不同于-b的实根x1、x2,且x1、-b、x2成等差数列;
(Ⅲ)若函数f(x)的极大值小于16,求f(1)的取值范围.

查看答案和解析>>

(2012•东城区模拟)已知函数f(x)=2ax3-3ax2+1,g(x)=-
a
4
x+
3
2
(a∈R).
(Ⅰ) 当a=1时,求函数y=f(x)的单调区间;
(Ⅱ) 当a≤0时,若任意给定的x0∈[0,2],在[0.2]上总存在两个不同的xi(i=1,2),使 得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+3bx2-(a+3b)x+1(ab≠0)在x=1处取得极值,在x=2处的切线平行于向量
OP
=(b+5,5a).
(1)求a,b的值,并求f(x)的单调区间;
(2)是否存在正整数m,使得方程f(x)=6x-
16
3
在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

若实数a≠0,函数f(x)=-2ax3-ax2+12ax+1,g(x)=2ax2+3.
(1)令h(x)=f(x)-g(x),求函数h(x)的极值;
(2)若在区间(0,+∞)上至少存在一点x0,使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>


同步练习册答案