最值问题常通过建立目标函数或目标量的不等式进行研究.另外还要注意运用“数形结合 .“几何法 求最值. 基础练习 查看更多

 

题目列表(包括答案和解析)

有关三角函数的最值问题通过探究你能总结一下有哪些方法吗?

查看答案和解析>>

(2006•宝山区二模)给出函数f(x)=
x2+4
+tx
(x∈R).
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当t=
1
2
时,可以将f(x)化成f(x)=a(
x2+4
+x)+b(
x2+4
-x)
的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记F(x)=
g(x)
+h(x)
,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>

已知,函数(其中为自然对数的底数).

  (Ⅰ)求函数在区间上的最小值;

  (Ⅱ)设数列的通项是前项和,证明:

【解析】本试题主要考查导数在研究函数中的运用,求解函数给定区间的最值问题,以及能结合数列的相关知识,表示数列的前n项和,同时能构造函数证明不等式的数学思想。是一道很有挑战性的试题。

 

查看答案和解析>>

给出函数数学公式(x∈R)
(1)当t≤-1时,证明y=f(x)是单调递减函数;
(2)当数学公式时,可以将f(x)化成数学公式的形式,运用基本不等式求f(x)的最小值及此时x的取值;
(3)设一元二次函数g(x)的图象均在x轴上方,h(x)是一元一次函数,记数学公式,利用基本不等式研究函数F(x)的最值问题.

查看答案和解析>>

某村计划建造一个室内面积为的矩形蔬菜温室。在温室内,沿左、右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

【解析】本试题考查了实际生活中的最值问题的运用,首先确定设矩形温室的长为xm,则宽为800/xm。

依题意有:种植面积:

运用导数的思想得到最值。

设矩形温室的长为xm,则宽为800/xm。

依题意有:种植面积:

                 

答:当矩形温室的长为20m,宽为40m时种植面积最大,最大种植面积是m2

 

查看答案和解析>>


同步练习册答案