若动点P.Q是椭圆9x2+16y2=144上的两点.O是其中心.若.则中心O到统PQ的距离OH必为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

下列四个命题:
①若0>a>b,则
1
a
1
b

②x>0,x+
1
x-1
的最小值为3;
③椭圆
x2
4
+
y2
3
=1
比椭圆
x2
4
+
y2
2
=1
更接近于圆;
④设A,B为平面内两个定点,若有|PA|+|PB|=2,则动点P的轨迹是椭圆;
其中真命题的序号为
①②③
①②③
.(写出所有真命题的序号)

查看答案和解析>>

以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中真命题的序号为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

(1)若动点P到定点F(2
2
,0)
的距离与到定直线l:x=
9
2
4
的距离之比为
2
2
3
,求证:动点P的轨迹是椭圆;
(2)设(1)中椭圆短轴的上顶点为A,试找出一个以点A为直角顶点的等腰直角△ABC,并使得B、C两点也在椭圆上,并求出△ABC的面积;
(3)对于椭圆
x2
a2
+y2=1
(常数a>1),设椭圆短轴的上顶点为A,试问:以点A为直角顶点,且B、C两点也在椭圆上的等腰直角△ABC有几个?说明理由.

查看答案和解析>>

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>

下列说法中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②命题“每个指数函数都是单调函数”是全称命题,而且是真命题.
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中正确的为
②④
②④
(写出所有真命题的序号)

查看答案和解析>>


同步练习册答案