6.已知点是曲线的弦AB的中点.则弦AB所在的直线方程是 A.x–y–4=0 B.x+y+2=0 C.x+2y+1=0 D.x–y+4=0 查看更多

 

题目列表(包括答案和解析)

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2)。
(1)求抛物线C的方程;
(2)命题:“过椭圆的一个焦点F1作与x轴不垂直的任意直线l交椭圆于A,B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是”,命题中涉及了这么几个要素:给定的圆锥曲线Γ,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1,M两点间的距离的比值。试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明;
(3)试推广(2)中的命题,写出关于抛物线的一般性命题(不必证明)。

查看答案和解析>>

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
3
,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+1与双曲线C恒有两个不同的交点A和B,P是弦AB的中点,OP的斜率为
2
3
(其中O为原点),求k的值.

查看答案和解析>>

在直角坐标平面内,已知a=(x+2,y),b=(x-2,y),且|a|-|b|=2.

(1)求点M(x,y)的轨迹C的方程;

(2)过点D(2,0)作倾斜角为锐角的直线l与曲线C交于A、B两点,且=求直线l的方程;

(3)是否存在过D的弦AB,使得AB中点Q在y轴上的射影P满足PA⊥PB?

如果存在,求出AB的弦长;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案