高考试题一般不要求特殊技巧.着重在“通性.通法 上.总结数学学科中解决问题的基本思想和方法.重点放在有价值的常规方法的应用上.特别是教材中每章节所给出的解决问题的一般方法. 查看更多

 

题目列表(包括答案和解析)

设函数fn( θ )=sinnθ+( -1 )ncosnθ,0≤θ≤
π
4
,其中n为正整数.
(Ⅰ)判断函数f1(θ)、f3(θ)的单调性,并就f1(θ)的情形证明你的结论;
(Ⅱ)证明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
(Ⅲ)试给出求函数fn(θ)的最大值和最小值及取得最值时θ的取值的一般规律(不要求给出证明).
fn(θ) fn(θ)的
单调性
fn(θ)的最小值及取得最小值时θ的取值 fn(θ)的最大值及取得最大值时θ的取值
n=1
n=2
n=3
n=4
n=5
n=6

查看答案和解析>>

(2013·上海高考)如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.

查看答案和解析>>

 已知函数是在上每一点均可导的函数,若时恒成立.

(1)求证:函数上是增函数;

(2)求证:当时,有

(3)请将(2)问推广到一般情况,并证明你的结论(不要求证明).

 

 

 

 

 

 

 

查看答案和解析>>

设函数,其中n为正整数.
(Ⅰ)判断函数f1(θ)、f3(θ)的单调性,并就f1(θ)的情形证明你的结论;
(Ⅱ)证明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
(Ⅲ)试给出求函数fn(θ)的最大值和最小值及取得最值时θ的取值的一般规律(不要求给出证明).
fn(θ)fn(θ)的
单调性
fn(θ)的最小值及取得最小值时θ的取值fn(θ)的最大值及取得最大值时θ的取值
n=1
n=2
n=3
n=4
n=5
n=6

查看答案和解析>>

   随着新课改的在我国的大力推行,过去一些陈旧的试题还不能更好地满足用户的需求。高考资源网将举办“新课改原创试题大比拼”,广大一线教师人人均可参与,只要参与就有机会。 “新课改原创试题大比拼”为您提供展示的平台,只要你有实力大奖就属于你!

查看答案和解析>>


同步练习册答案