10.函数f : {1, 2, 3}→{1, 2, 3}.满足.则这样的函数个数共有10 查看更多

 

题目列表(包括答案和解析)

函数f:{1,2,3}→{1,2,3}满足f(f(x))= f(x),则这样的函数共有(    )

A.1个                B.4个                  C.8个                D.10个

查看答案和解析>>

函数f:{1,2,3}→{1,2,3}满足f[f(x)]=f(x),则这样的函数个数共有(    )

A.1个              B.4个           C.8个          D.10个

查看答案和解析>>

已知函数f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)满足f(1+x)+f(1-x)=2,且直线y=k(x-1)+1与f(x)的图象有5个交点,则这些交点的纵坐标之和为(  )

查看答案和解析>>

已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=fg1(x)], g3(x)=f g2(x)],…gn(x)=fgn–1(x)],…

(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;

(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;

(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=fg1(x)]=f(0)<0,

n≥2时,gn(x)<0  试问是否存在区间BAB),对于区间内任意实数x,只要n≥2,都有gn(x)<0.

查看答案和解析>>


同步练习册答案