题目列表(包括答案和解析)
(本题满分15分)
已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点(
,
).
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
![]()
(本小题满分15分)
已知以点
为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点。
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若
,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求
的最小值及此时点P的坐标。
(本小题满分15分)
已知以点
为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点。
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若
,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求
的最小值及此时点P的坐标。
(本题满分15分)
在平面直角坐标系xOy中,已知对于任意实数
,直线
恒过定点F. 设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为
.
(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:
与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.
(本题满分15分)
在平面直角坐标系xOy中,已知对于任意实数
,直线
恒过定点F. 设椭圆C的中心在原点,一个焦点为F,且椭圆C上的点到F的最大距离为
.
(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:
与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com