(北师大版必修2第101页例8) 判断圆与圆的位置关系.并画出图形. 变式1:圆和圆的位置关系是( ) A.相离 B.外切 C.相交 D.内切 解:∵圆的圆心为.半径.圆的圆心为.半径.∴.∵.∴两圆相交.故选(C). 变式2:若圆与圆相切.则实数的取值集合是 . 解:∵圆的圆心为.半径.圆的圆心为.半径.且两圆相切.∴或.∴或.解得或.或或.∴实数的取值集合是. 变式3:求与圆外切于点.且半径为的圆的方程. 解:设所求圆的圆心为.则所求圆的方程为.∵两圆外切于点.∴.∴.∴.∴所求圆的方程为. 查看更多

 

题目列表(包括答案和解析)

我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题.
(1)设F1、F2是椭圆M:
x2
25
+
y2
9
=1
的两个焦点,点F1、F2到直线L:
2
x-y+
5
=0的距离分别为d1、d2,试求d1•d2的值,并判断直线L与椭圆M的位置关系.
(2)设F1、F2是椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,点F1、F2到直线L:mx+ny+p=0(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1•d2的值.
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明.
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明).

查看答案和解析>>

设抛物线的焦点为,点线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆

1)求的值;

2)试判断圆轴的位置关系;

3)在坐标平面上是否存在定点,使得恒过点?若存在,求出的坐标;若不存在,说明理由

 

查看答案和解析>>

如图,在圆上任取一点,过点轴的垂线段为垂足.设为线段的中点.
(1)当点在圆上运动时,求点的轨迹的方程;
(2)若圆在点处的切线与轴交于点,试判断直线与轨迹的位置关系.

查看答案和解析>>

如图,是圆的直径,点是圆上异于的点,直线平面分别是的中点。

(I)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;

(II)设(I)中的直线与圆的另一个交点为,且点满足。记直线与平面所成的角为,异面直线所成的角为,二面角的大小为,求证:

查看答案和解析>>

设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)试判断圆轴的位置关系;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案