解法一: (Ⅰ)由图像可知.在上. 在上.在上 故在上递增.在上递减. 因此在处取得极大值.所以 (Ⅱ) 由 得解得 解法二: (Ⅰ)同解法一 (Ⅱ)设 又 所以 由 即 得 所以 查看更多

 

题目列表(包括答案和解析)

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

10、如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时.根据这个函数图象,提出关于这两个旅行者的如下信息:
①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发了1.5小时后,追上了骑自行车者.
其中正确信息的序号是(  )

查看答案和解析>>

某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…第六组,成绩大于等于18秒且小于19秒.右图是按上述分组方法得到的频率分布直方图.由图可知,人数最多的一组是第
第三
第三
组,该组人数为
18
18

查看答案和解析>>

某大型企业2010年和2011年进行科技创新,企业有效转型,产品大规模升级,该企业2012年季度利润和季度能源成本分别为x、y,其值见表,x单位为千万元,y单位为十万元.下面四个结论:
季度 1 2 3 4
x 30 31 33 34
y 18 16 14 12
①点(x,y)不在一条直线上;
②季度利润随季度能源成本的增加而增加;
③该企业2012年季度利润平均为3.2亿元,季度能源成本平均为150万元;
④由表可知2013年春季的利润为3.55亿元,能源成本为100万元.
其中正确的是
 
(只填结论番号,多填少填错填均得零分).

查看答案和解析>>

在一次由甲、乙、丙三人参加的围棋争霸赛中,比赛按以下规则进行,第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者.根据以往战绩可知,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,
(1)求比赛以乙连胜四局而告终的概率;
(2)求比赛以丙连胜三局而告终的概率.

查看答案和解析>>


同步练习册答案