题目列表(包括答案和解析)
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
(本小题满分14分)
设椭圆C:
的左、右焦点分别为F1、F2,A是椭圆C上的一点,
,坐标原点O到直线AF1的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l 交 x 轴于点
,交
y 轴于点M,若
,求直线l 的斜率.
(本小题满分14分)
已知点P (4,4),圆C:
与椭圆E:
的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线
与圆C相切。
(1)求m的值与椭圆E的方程;
(2)设D为直线PF1与圆C 的切点,在椭圆E上是否存在点Q ,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由。
(本小题满分14分)
已知椭圆C1:
(a>b>0)的离心率为
,直线
:
+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F 1,右焦点F2,直线
过点F1且垂直于椭圆的长轴,动直线
垂直直线
于点P,线段PF2的垂直平分线交
于点M,求点M的轨迹C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。
(本小题满分14分)
已知椭圆C1:
(a>b>0)的离心率为
,直线
:
+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F 1,右焦点F2,直线
过点F1且垂直于椭圆的长轴,动直线
垂直直线
于点P,线段PF2的垂直平分线交
于点M,求点M的轨迹C2的方程;
(3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com