设椭圆C:的左焦点为F.上顶点为A.过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P.Q.且. ⑴求椭圆C的离心率, ⑵若过A.Q.F三点的圆恰好与直线l: 相切.求椭圆C的方程. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知F1F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线CPQ两个不同的交点,点P关于x轴的对称点记为M.设=λ.

(Ⅰ)求曲线C的方程;

(Ⅱ)证明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.

 

 

查看答案和解析>>

(本小题满分14分)

设椭圆C的左、右焦点分别为F1F2A是椭圆C上的一点,,坐标原点O到直线AF1的距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l x 轴于点,交 y 轴于点M,若,求直线l 的斜率.

 

查看答案和解析>>

(本小题满分14分)

已知点P (4,4),圆C:与椭圆E:的一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点,直线与圆C相切。

(1)求m的值与椭圆E的方程;

(2)设D为直线PF1与圆C 的切点,在椭圆E上是否存在点Q ,使△PDQ是以PD为底的等腰三角形?若存在,请指出共有几个这样的点?并说明理由。

查看答案和解析>>

(本小题满分14分)

   已知椭圆C1 (a>b>0)的离心率为,直线+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。

  (1)求椭圆C1的方程;

  (2)设椭圆C1的左焦点为F 1,右焦点F2,直线过点F1且垂直于椭圆的长轴,动直线垂直直线于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

  (3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。

查看答案和解析>>

(本小题满分14分)

   已知椭圆C1 (a>b>0)的离心率为,直线+2=0与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。

  (1)求椭圆C1的方程;

  (2)设椭圆C1的左焦点为F 1,右焦点F2,直线过点F1且垂直于椭圆的长轴,动直线垂直直线于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

  (3)若A(x1,2)、B(x2 ,Y2)、C(x0,y0)是C2上不同的点,且AB⊥ BC,求Yo的取值范围。

查看答案和解析>>


同步练习册答案