当x≥y≥0.且3≤x+y≤5时.的最大值为 . 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)

   探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中y值随x值变化的特点,完成下列问题:

(1)若函数,(x>0)在区间(0,2)上递减,则在        上递增;

(2)当x=        时,,(x>0)的最小值为        

(3)试用定义证明,(x>0)在区间(0,2)上递减;

(4)函数,(a>0, 且a≠1)有最值吗?是最大值还是最小值?此时x为何值?(只写结果,不要求写过程).

查看答案和解析>>

(本小题满分16分)

   探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中y值随x值变化的特点,完成下列问题:

(1)若函数,(x>0)在区间(0,2)上递减,则在        上递增;

(2)当x=        时,,(x>0)的最小值为        

(3)试用定义证明,(x>0)在区间(0,2)上递减;

(4)函数,(a>0, 且a≠1)有最值吗?是最大值还是最小值?此时x为何值?(只写结果,不要求写过程).

查看答案和解析>>

(本小题满分16分)

   探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中y值随x值变化的特点,完成下列问题:

(1)若函数,(x>0)在区间(0,2)上递减,则在        上递增;

(2)当x=        时,,(x>0)的最小值为        

(3)试用定义证明,(x>0)在区间(0,2)上递减;

(4)函数,(a>0, 且a≠1)有最值吗?是最大值还是最小值?此时x为何值?(只写结果,不要求写过程).

查看答案和解析>>

实数对(x,y)满足不等式组
x-y-2≤0
x+2y-5≥0
y-2≤0
,则目标函数z=kx-y当且仅当x=3,y=1时取最大值,则k的取值范围是
(-
1
2
,1)
(-
1
2
,1)

查看答案和解析>>

z=kx-y,其中实数x,y满足
x-y-2≤0
x+2y-5≥0
y-2≤0.
,若当且仅当x=3,y=1时,z取得最大值,则k的取值范围为
 

查看答案和解析>>


同步练习册答案