17.设椭圆的上顶点为.椭圆上两点在轴上的射影分别为左焦点和右焦点.直线的斜率为.过点且与垂直的直线与轴交于点.的外接圆为圆. (1)求椭圆的离心率, (2)直线与圆相交于两点.且.求椭圆方程, 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

设椭圆的左、右焦点分别为F1、F2,上顶点为A,离心率e=,在x轴负半轴上有一点B,且

(Ⅰ)若过A、B、F2三点的圆恰好与直线相切,求椭圆C的方程;

(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.

查看答案和解析>>

(本题满分14分)

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.

(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段中点的轨迹方程;

(3)过原点的直线交椭圆于点,求面积的最大值。

 

查看答案和解析>>

(本题满分14分)

设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.

   (1)求椭圆的离心率;

   (2)若过三点的圆恰好与直线相切,求椭圆的方程;

   (3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。  

 

查看答案和解析>>

(本题满分14分)
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

查看答案和解析>>

(本题满分14分)

已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

(Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>


同步练习册答案