12.已知是半径为的⊙的直径...是 圆上两点.且..沿将半圆 折成一个直二面角.则.两点间的距离为 . 查看更多

 

题目列表(包括答案和解析)

精英家教网已知A,B 分别为曲线C:
x2
a2
+y2=1(y≥0,a>0)与x轴的左、右两个交点,直线l过点B,且与x轴垂直,S为l上异于点B的一点,连接AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧
AB
的三等分点,试求出点S的坐标;
(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

已知以椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F为圆心,a为半径的圆与直线l:x=
a2
c
(其中c=
a2-b2
)交于不同的两点,则该椭圆的离心率的取值范围是(  )
A、(
5
-1
2
,1)
B、(
3
-1
2
,1)
C、(0,
3
-1
2
)
D、(0,
5
-1
2
)

查看答案和解析>>

已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,点M是椭圆上异于A1、A2的任意一点,设直线MA1、MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值;
(Ⅲ)设椭圆方程
x2
a2
+
y2
b2
=1
,A1、A2为长轴两个端点,M为椭圆上异于A1、A2的点,kMA1kMA2分别为直线MA1、MA2的斜率,利用上面(Ⅱ)的结论得kMA1kMA2=
 
(只需直接填入结果即可,不必写出推理过程).

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的一动点P到右焦点的最短距离为
2
-1
,且右焦点到右准线的距离等于短半轴的长.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 过点M(0,-
1
3
)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

已知常数m>0,向量
a
=(0,1),向量
b
=(m,0),经过点A(m,0),以λ
a
+
b
为方向向量的直线与经过点B(-m,0),以λ
b
-4
a
为方向向量的直线交于点P,其中λ∈R.
(1)求点P的轨迹E;
(2)若m=2
5
,F(4,0),问是否存在实数k使得以Q(k,0)为圆心,|QF|为半径的圆与轨迹E在x轴上方交于M、N两点,并且|MF|+|NF|=3
5
.若存在求出k的值;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案