答案:D 解析: 将代入得: .显然该关于的方程有两正解.即x有四解.所以交点有4个.故选择答案D. 查看更多

 

题目列表(包括答案和解析)

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

在△中,∠,∠,∠的对边分别是,且 .

(1)求∠的大小;(2)若,求的值.

【解析】第一问利用余弦定理得到

第二问

(2)  由条件可得 

将    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

答案:D

解析:本题考查同角三角函数关系应用能力,先由cotA=知A为钝角,cosA<0排除A和B,再由选D

查看答案和解析>>

过平行六面体ABCDA1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有(  )

A.4条          B.6条 

C.8条          D.12条

[答案] D

[解析] 如图所示,设MNPQ为所在边的中点,

则过这四个点中的任意两点的直线都与面DBB1D1平行,这种情形共有6条;同理,经过BCCDB1C1C1D1四条棱的中点,也有6条;故共有12条,故选D.

查看答案和解析>>

答案:D

解析:本题考查同角三角函数关系应用能力,先由cotA=知A为钝角,cosA<0排除A和B,再由选D

查看答案和解析>>


同步练习册答案