求数列的通项通常有两种题型:一是根据所给的一列数.通过观察求通项,一是根据递推关系式求通项. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知数列中,,其前项和满足.令.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求证:);

(Ⅲ)令),求同时满足下列两个条件的所有的值:①对于任意正整数,都有;②对于任意的,均存在,使得时,.

查看答案和解析>>

(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)

若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得:

①若方程有两相异实根,则数列通项可以写成,(其中是待定常数);

②若方程有两相同实根,则数列通项可以写成,(其中是待定常数);

再利用可求得,进而求得

根据上述结论求下列问题:

(1)当)时,求数列的通项公式;

(2)当)时,求数列的通项公式;

(3)当)时,记,若能被数整除,求所有满足条件的正整数的取值集合.

查看答案和解析>>

是数列的前项和,对任意都有成立, (其中是常数).

(1)当时,求

(2)当时,

①若,求数列的通项公式;

②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”.

如果,试问:是否存在数列为“数列”,使得对任意,都有

,且.若存在,求数列的首项的所

有取值构成的集合;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分12分)

        已知函数,若存在实数则称是函数的一个不动点.

   (I)证明:函数有两个不动点;

   (II)已知a、b是的两个不动点,且.当时,比较

        的大小;

   (III)在数列中,,等式对任何正整数n都成立,求数列的通项公式.

 

查看答案和解析>>

设项数均为)的数列项的和分别为.已知,且集合=.
(1)已知,求数列的通项公式;
(2)若,求的值,并写出两对符合题意的数列
(3)对于固定的,求证:符合条件的数列对()有偶数对.

查看答案和解析>>


同步练习册答案