题目列表(包括答案和解析)
(本小题满分14分)已知数列
中,
,
,其前
项和
满足
.令
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,求证:
(
);
(Ⅲ)令
(
),求同时满足下列两个条件的所有
的值:①对于任意正整数
,都有
;②对于任意的
,均存在
,使得
时,
.
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列
满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程
有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程
有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用
可求得
,进而求得
.
根据上述结论求下列问题:
(1)当
,
(
)时,求数列
的通项公式;
(2)当
,
(
)时,求数列
的通项公式;
(3)当
,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
设
是数列
的前
项和,对任意
都有
成立, (其中
、
、
是常数).
(1)当
,
,
时,求
;
(2)当
,
,
时,
①若
,
,求数列
的通项公式;
②设数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“
数列”.
如果
,试问:是否存在数列
为“
数列”,使得对任意
,都有
,且
.若存在,求数列
的首项
的所
有取值构成的集合;若不存在,说明理由.
(本小题满分12分)
已知函数
,若存在实数
则称
是函数
的一个不动点.
(I)证明:函数
有两个不动点;
(II)已知a、b是
的两个不动点,且
.当
时,比较
的大小;
(III)在数列
中,
,等式
对任何正整数n都成立,求数列
的通项公式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com