解:(Ⅰ) ∵在x=1处取得极值.∴解得 (Ⅱ) ∵ ∴ ①当时.在区间∴的单调增区间为 ②当时.由 ∴ (Ⅲ)当时.由(Ⅱ)①知. 当时.由(Ⅱ)②知. 矛盾. 综上可知.若得最小值为1.则a的取值范围是 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=在x=1处取得极值2.
(1)求函数f(x)的解析式;
(2)实数m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)是否存在这样的实数m,同时满足:①m≤1;②当x∈(-∞,m]时,f(x)≥m恒成立.若存在,请求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=数学公式在x=1处取得极值2.
(1)求函数f(x)的解析式;
(2)实数m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)是否存在这样的实数m,同时满足:①m≤1;②当x∈(-∞,m]时,f(x)≥m恒成立.若存在,请求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=
axx2+b
在x=1处取得极值2.
(1)求函数f(x)的解析式;
(2)实数m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)是否存在这样的实数m,同时满足:①m≤1;②当x∈(-∞,m]时,f(x)≥m恒成立.若存在,请求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=
ax
x2+b
在x=1处取得极值2.
(1)求函数f(x)的解析式;
(2)实数m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)是否存在这样的实数m,同时满足:①m≤1;②当x∈(-∞,m]时,f(x)≥m恒成立.若存在,请求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

(2013•唐山一模)已知函数f(x)=
mx+nex
在x=1处取得极值e-1
(I )求函数f(x)的解析式,并求f(x)的单调区间;
(II)当x>0 时,试证:f(1+x)>f(1-x).

查看答案和解析>>


同步练习册答案