20.(1) 由已知.所以.所以 所以 1分 又由过焦点且垂直于长轴的直线被椭圆截得的弦长为 所以 3分 所以 4分 (2)设 设与椭圆联立得 整理得 得 6分 由点在椭圆上得 8分 又由,即 所以 所以 整理得: 所以 10分 所以 由得 所以.所以或 12分 查看更多

 

题目列表(包括答案和解析)

 

已知函数.

(Ⅰ)讨论函数的单调性; 

(Ⅱ)设,证明:对任意.

    1.选修4-1:几何证明选讲

    如图,的角平分线的延长线交它的外接圆于点

(Ⅰ)证明:∽△;

(Ⅱ)若的面积,求的大小.

证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.

因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因为△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.

 

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

【解析】第一问利用设椭圆的方程为,由题意得

解得

第二问若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以.解得。

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为A,B为不同的两点,所以k=1/2.

于是存在直线L1满足条件,其方程为y=1/2x

 

查看答案和解析>>

已知曲线上动点到定点与定直线的距离之比为常数

(1)求曲线的轨迹方程;

(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;

(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

【解析】第一问利用(1)过点作直线的垂线,垂足为D.

代入坐标得到

第二问当斜率k不存在时,检验得不符合要求;

当直线l的斜率为k时,;,化简得

第三问点N与点M关于X轴对称,设,, 不妨设

由于点M在椭圆C上,所以

由已知,则

由于,故当时,取得最小值为

计算得,,故,又点在圆上,代入圆的方程得到.  

故圆T的方程为:

 

查看答案和解析>>

为了能更好地了解鲸的生活习性,某动物研究所在受伤的鲸身上安装了电子监测装置.从海岸放归点A处(如图所示)把它放归大海,并沿海岸线由西向东不停地对鲸进行了40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动).然后又在观测站B处对鲸进行生活习性的详细观测.已知AB=15km,观测站B的观测半径为5km.


(Ⅰ)根据表中数据:①计算鲸沿海岸线方向运动的速度,②写出a、b满足的关系式并画出鲸的运动路线简图;
(Ⅱ)若鲸继续以(Ⅰ)中②的运动路线运动,则鲸大约经过多少分钟(从放归时计时),可进入前方观测站B的观测范围(精确到1分钟)?

查看答案和解析>>

(2006•松江区模拟)为了能更好地了解鲸的生活习性,某动物研究所在受伤的鲸身上安装了电子监测装置.从海岸放归点A处(如图所示)把它放归大海,并沿海岸线由西向东不停地对鲸进行了40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动).然后又在观测站B处对鲸进行生活习性的详细观测.已知AB=15km,观测站B的观测半径为5km.


(Ⅰ)根据表中数据:①计算鲸沿海岸线方向运动的速度,②写出a、b满足的关系式并画出鲸的运动路线简图;
(Ⅱ)若鲸继续以(Ⅰ)中②的运动路线运动,则鲸大约经过多少分钟(从放归时计时),可进入前方观测站B的观测范围(精确到1分钟)?

查看答案和解析>>


同步练习册答案