18.解:(I)由 得 即 ----4分 是以1为首项.4为公差的等差数列 ----6分 (II) ----10分 又易知单调递增. 故 得 ----12分 查看更多

 

题目列表(包括答案和解析)

已知数列是首项为的等比数列,且满足.

(1)   求常数的值和数列的通项公式;

(2)   若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;

(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.

【解析】第一问中解:由,,

又因为存在常数p使得数列为等比数列,

,所以p=1

故数列为首项是2,公比为2的等比数列,即.

此时也满足,则所求常数的值为1且

第二问中,解:由等比数列的性质得:

(i)当时,

(ii) 当时,

所以

第三问假设存在正整数n满足条件,则

则(i)当时,

 

查看答案和解析>>

19C.解:由,所以,所以,因为f(x)=x,所以解得x=-1或-2或2,所以选C

调查某医院某段时间内婴儿出生时间与性别的关系,得到以下数据。

晚上

白天

合计

男婴

24

31

55

女婴

8

26

34

合计

32

57

89

试问有多大把握认为婴儿的性别与出生时间有关系?

查看答案和解析>>

已知x>0,y>0且x+y=4,求的最小值.某学生给出如下解法:由x+y=4,得4≥2①,即②,又因为≥2③,由②③得④,即所求最小值为⑤.请指出这位同学错误的原因:__________.

查看答案和解析>>

先阅读第(1)题的解法,再解决第(2)题:
(1)已知向量,求x2+y2的最小值.
解:由,当时取等号,
所以x2+y2的最小值为
(2)已知实数x,y,z满足2x+3y+z=1,则x2+y2+z2的最小值为   

查看答案和解析>>

中,已知 ,面积

(1)求的三边的长;

(2)设(含边界)内的一点,到三边的距离分别是

①写出所满足的等量关系;

②利用线性规划相关知识求出的取值范围.

【解析】第一问中利用设中角所对边分别为

    

又由 

又由 

       又

的三边长

第二问中,①

依题意有

作图,然后结合区域得到最值。

 

查看答案和解析>>


同步练习册答案