题目列表(包括答案和解析)
已知椭圆
的中心在坐标原点,左顶点
,离心率
,
为右焦点,过焦点
的直线交椭圆
于
、
两点(不同于点
).
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
时,求直线PQ的方程;
(Ⅲ)判断
能否成为等边三角形,并说明理由.
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
相交于
,
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.
已知椭圆
的中心在坐标原点,焦点在
轴上,离心率为
,椭圆的短轴端点和焦点所组成的四边形周长等于8。
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求直线
的方程。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com