已知a>0且a≠1.设P:关于x的不等式ax>1的解集是{x|x<0},Q:函数y=lg(ax2-x+a)的定义域为R,如果P和Q有且仅有一个正确,求a的取值范围. 解:若P真,则0<a<1;若P假,则a≥1,若Q真,由 得a>;若Q假,则0<a≤. 又P和Q有且仅有一个正确,当P真Q假时,0<a≤;当P假Q真时,a≥1. 综上,得a∈(0,]∪[1,+∞). 查看更多

 

题目列表(包括答案和解析)

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

已知椭圆数学公式(a>b>0)上的一动点P到右焦点的最短距离为数学公式,且右焦点到右准线的距离等于短半轴的长.
(1)求椭圆C的方程;
(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;
(3)在(2)的条件下,过点Q的直线与椭圆C交于M,N两点,求数学公式的取值范围.

查看答案和解析>>

已知向量
m
=(x2,y-cx)
n
=(1,x+b)
m
n
,(x,y,b,c∈R),且把其中x,y所满足的关系式记为y=f(x),若f′(x)为f(x)的导函数,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函数.
(Ⅰ)求
b
a
和c的值;
(Ⅱ)若函数f(x)在[
a
2
a2]
上单调递减,求b的取值范围;
(Ⅲ)当a=2时,设0<t<4且t≠2,曲线y=f(x)在点A(t,f(t))处的切线与曲线y=f(x)相交于点B(m,f(m))(A,B不重合),直线x=t与y=f(m)相交于点C,△ABC的面积为S,试用t表示△ABC的面积S(t),若P为S(t)上一动点,D(4,0),求直线PD的斜率的取值范围.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
3
=1(a>
10
)的右焦点F在圆D:(x-2)2+y2=1上,直线l:x=my+3(m≠0)交椭圆于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点N关于x轴的对称点为N1,且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>o)
的左焦点为F(-
2
,0),离心率e=
2
2
,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>


同步练习册答案