解析:(Ⅰ)由得函数的定义域为. . ------------ 2分 由得,由得. ∴函数的递增区间是,递减区间是.------------ 4分 知,在上递减,在上递增. ∴ 又∵..且, ∴时,. ------------ 6分 ∵不等式恒成立, ∴. 即 ∵是整数.∴. ∴存在整数.使不等式恒成立. -------- 9分 (Ⅲ)由得. 令,则. 由得,由得. ∴在上单调递减,在上单调递增. ------------ 11分 ∵方程在上恰有两个相异的实根, ∴函数在和上各有一个零点, ∴. ∴实数的取值范围是 ---------- 14分 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,

(1)求f(x)的解析式;

(2) 若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;

(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。

查看答案和解析>>

已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,
(1)求f(x)的解析式;
(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;
(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。

查看答案和解析>>

 已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的“不动点”,若函数f(x)有且仅有一个不动点,

(1)求f(x)的解析式;

(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;

(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。

 

 

 

 

 

 

 

查看答案和解析>>

对于定义域分别为的函数,规定:
函数
(1)   若函数,求函数的取值集合;
(2)   若,其中是常数,且,请问,是否存在一个定义域为的函数及一个的值,使得,若存在请写出一个的解析式及一个的值,若不存在请说明理由。

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案