已知函数(.). (Ⅰ)求函数的单调递增区间, (Ⅱ)若不等式对一切正整数恒成立.求实数的取值范围. 解:(Ⅰ) ------- 2分 . 由.得. ... 又. 函数的单调递增区间为,递减区间为. ---- 6分 (Ⅱ)[法一]不等式.即为.-----(※) 令.当时.. 则不等式(※)即为. -------9分 令.. 在的表达式中.当时.. 又时.. 在单调递增.在单调递减. 在时.取得最大.最大值为. -------12分 因此.对一切正整数.当时.取得最大值. 实数的取值范围是. ---------- 14分 [法二]不等式.即为.------(※) 设. . 令.得或. ---------- 10分 当时..当时.. 当时.取得最大值. 因此.实数的取值范围是. ---------- 14分 查看更多

 

题目列表(包括答案和解析)

已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.

查看答案和解析>>

(2013•广州三模)已知定义在R上的单调函数f(x),存在实数x0使得对任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对任意的正整数n.有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系,并给出证明.

查看答案和解析>>

已知定义在R上的单调函数y=f(x),当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并写出适合条件的函数f(x)的一个解析式;
(2)数列{an}满足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通项公式an的表达式;
②令bn=(
1
2
)anSn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,试比较Sn
4
3
Tn
的大小,并加以证明;
③当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
对于不小于2的正整数n恒成立,求x的取值范围.

查看答案和解析>>

(2009•黄冈模拟)已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对于任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系,并给出证明;
(3)在(2)的条件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.

查看答案和解析>>

(2009•黄冈模拟)已知定义域在R上的单调函数,存在实数x0,使得对于任意的实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(1)=1,且对于任意的正整数n,有an=
1
f(n)
,bn=f(
1
2n
)+1
(Ⅰ)若Sn=a1a2+a2a3+…+anan+1,求Sn
(Ⅱ)若Tn=b1b2+b2b3+…+bnbn+1,求Tn

查看答案和解析>>


同步练习册答案