设函数.求函数的单调区间与极值. [命题意图]本题考查导数的运算.利用导数研究函数的单调性与极值的方法.考查综合应用数学知识解决问题的能力. [解题指导](1)对函数求导.对导函数用辅助角公式变形.利用导数等于0得极值点.通过列表的方法考查极值点的两侧导数的正负.判断区间的单调性.求极值. [思维总结]对于函数解答题.一般情况下都是利用导数来研究单调性或极值.利用导数为0得可能的极值点.通过列表得每个区间导数的正负判断函数的单调性.进而得出极值点. 查看更多

 

题目列表(包括答案和解析)

已知函数,求它的单调区间.

查看答案和解析>>

(2013•哈尔滨一模)已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-
x+1x-1
,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

16、设函数f(x)=|x2-4x-5|,x∈R.
(1)试求出函数f(x)=|x2-4x-5|的零点
(2)在区间[-2,6]上画出函数f(x)的图象;
(3)写出该函数在R上的单调区间.

查看答案和解析>>

已知函数f x)=lnxgx)=ex

(I)若函数φ x) = f x)-,求函数φ x)的单调区间;

(Ⅱ)设直线l为函数的图象上一点Ax0f x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=gx)相切.

 

查看答案和解析>>

(本小题满分12分)已知函数,其中为常数。

   (1)若当时,取得极值,求的值,并求出的单调区间;

   (2)设,问是否存在实数,使得当时,有最大值,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>


同步练习册答案