(一)主要知识: 三角函数的定义域.值域及周期如下表: 函数 定义域 值域 周期 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.

(1) 求f(x)的解析式;

(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.

【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以

第二问中,

   可以得到单调区间。

解:(Ⅰ)由题意得,,…………………1分

代入点,得…………1分

    ∴

(Ⅱ)   的单调递减区间为.

 

查看答案和解析>>

已知R.

(1)求函数的最大值,并指出此时的值.

(2)若,求的值.

【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简=,然后利用是,函数取得最大值(2)中,结合(1)中的结论,然后由

,两边平方得,因此

 

查看答案和解析>>

已知函数的图像上两相邻最高点的坐标分别为.(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边,且的取值范围.

【解析】本试题主要考查了三角函数的图像与性质的综合运用。

第一问中,利用所以由题意知:;第二问中,,即,又

,解得

所以

结合正弦定理和三角函数值域得到。

解:(Ⅰ)

所以由题意知:

(Ⅱ),即,又

,解得

所以

因为,所以,所以

 

查看答案和解析>>

已知,求的值

【解析】本试题主要考查了三角函数的二倍角公式的运用。利用同角三角函数关系式可知

,所以,再利用二倍角正切公式

得到结论。

解:(Ⅰ)

  

 

查看答案和解析>>

已知函数

(1)设常数,若在区间上是增函数,求的取值范围;

(2)设集合,若,求的取值范围.

【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。

第一问中利用

利用函数的单调性得到,参数的取值范围。

第二问中,由于解得参数m的取值范围。

(1)由已知

又因为常数,若在区间上是增函数故参数 

 (2)因为集合,若

 

查看答案和解析>>


同步练习册答案