题目列表(包括答案和解析)
已知![]()
R
.
(1)求函数
的最大值,并指出此时
的值.
(2)若
,求
的值.
【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简
=
,然后利用
是,函数取得最大值
(2)中,结合(1)中的结论,然后由![]()
得
,两边平方得
即
,因此![]()
已知函数
,
(1)设常数
,若
在区间
上是增函数,求
的取值范围;
(2)设集合
,
,若
,求
的取值范围.
【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。
第一问中利用
![]()
利用函数的单调性得到,参数的取值范围。
第二问中,由于
解得参数m的取值范围。
(1)由已知
![]()
又因为常数
,若
在区间
上是增函数故参数![]()
(2)因为集合
,
,若![]()
已知函数![]()
的图像上两相邻最高点的坐标分别为
和
.(Ⅰ)求
与
的值;(Ⅱ)在
中,
分别是角
的对边,且
求
的取值范围.
【解析】本试题主要考查了三角函数的图像与性质的综合运用。
第一问中,利用
所以由题意知:
,
;第二问中,
,即
,又
,
则
,解得
,
所以![]()
结合正弦定理和三角函数值域得到。
解:(Ⅰ)
,
所以由题意知:
,
;
(Ⅱ)
,即
,又
,
则
,解得
,
所以![]()
因为
,所以
,所以![]()
已知
,
,求
的值
【解析】本试题主要考查了三角函数的二倍角公式的运用。利用同角三角函数关系式可知
,所以![]()
,再利用二倍角正切公式
得到结论。
解:(Ⅰ)![]()
![]()
![]()
![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com