解法一:(1)如图,由题意知AC⊥BC,, 其中当时.y=0.065,所以k=9 所以y表示成x的函数为 (2),, 令得,所以,即,当时, ,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数有最小值. 解法二: (1)同上. (2)设, 则,,所以 当且仅当即时取 = . 下面证明函数在上为减函数, 在上为增函数. 设0<m1<m2<160,则 , 因为0<m1<m2<160,所以4>4×240×240 9 m1m2<9×160×160所以, 所以即函数在上为减函数. 同理,函数在上为增函数,设160<m1<m2<400,则 因为1600<m1<m2<400,所以4<4×240×240, 9 m1m2>9×160×160 所以, 所以即函数在上为增函数. 所以当m=160即时取 = ,函数y有最小值, 所以弧上存在一点.当时使建在此处的垃圾处理厂对城A和城B的总影响度最小. [命题立意]:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题. 查看更多

 

题目列表(包括答案和解析)

(2009•台州二模)如图,已知A、B、C是一条直路上的三点,一个人从A出发行走到B处时,望见塔M(将塔M视为与A、B、C在同一水平面上一点)在正东方向且A在东偏南α方向,继续行走1km在到达C处时,望见塔M在东偏南β方向,则塔M到直路ABC的最短距离为(  )

查看答案和解析>>

精英家教网如图,已知A、B、C是一条直路上的三点,AB与BC各等于1千米,从三点分别遥望塔M,在A处看见塔在北偏东45方向,在B处看见塔在正东方向,在C处看见塔在南偏东60°方向,求塔到直路ABC的最短距离.

查看答案和解析>>

(2011•江西模拟)如图,已知A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.
(1)求椭圆的离心率;
(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.

查看答案和解析>>

如图,已知A是椭圆上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.
(1)求椭圆的离心率;
(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.

查看答案和解析>>

如图,已知A、B、C是一条直路上的三点,一个人从A出发行走到B处时,望见塔M(将塔M视为与A、B、C在同一水平面上一点)在正东方向且A在东偏南α方向,继续行走1km在到达C处时,望见塔M在东偏南β方向,则塔M到直路ABC的最短距离为( )

A.sin(α-β)km
B.
C.
D.sinαsinβkm

查看答案和解析>>


同步练习册答案