已知:如图.α∥β.异面直线AB.CD和平面α.β分别交于A.B.C.D四点.E.F.G.H分别是AB.BC.CD.DA的中点.求证:面EFGH∥平面α. 证明 (1)∵E.H分别是AB.DA的中点.∴EH∥BD.同理FG∥BD.∴FG∥EH.∴四边形EFGH是平行四边形.即E.F.H.G共面. (2)平面ABD和平面α有一个公共点A.设两平面交于过点A的直线AD′∴α∥β.∴ AD′∥BD.又∵BD∥EH.∴EH∥BD∥AD′.∴EH∥平面α.EH∥平面β.同理FG∥平面α.FG∥平面β. ∴平面EFHG∥平面α∥平面β. 查看更多

 

题目列表(包括答案和解析)

已知:如图,α∥β,异面直线AB、CD和平面α、β分别交于A、B、C、D四点,E、F、G、H分别是AB、BC、CD、DA的中点,

求证:(1)E、F、G、H共面;

(2)面EFGH∥平面α.

查看答案和解析>>

如图,已知α∥β,异面直线AB、CD和平面α、β分别交于A、B、C、D四点,E、F、G、H分别是AB、BC、CD、DA的中点,
求证:(1)E、F、G、H共面;
(2)平面EFGH∥平面α。

查看答案和解析>>

如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.

(1)求证:MN⊥AB,MN⊥CD;

(2)求MN的长;

(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:

(1)·
(2)·
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.

查看答案和解析>>

如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.

(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>


同步练习册答案