题目列表(包括答案和解析)
已知
是等差数列,其前n项和为
,
是等比数列,且![]()
![]()
(I)求数列
与
的通项公式;
(II)记
求证:
,
。
【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
设数列{
}的前n项和
满足:
=n
-2n(n-1).等比数列{
}的前n项和为
,公比为
,且
=
+2
.
(1)求数列{
}的通项公式;
(2)设数列{
}的前n项和为
,求证:
≤
<
.
【解析】
=
+2
求出
,由
=n
-2n(n-1)递写一个式子相减,得{
}为等差数列;(2)裂项法求
,然后证明
≤
<
.
已知数列
满足
(I)求数列
的通项公式;
(II)若数列
中
,前
项和为
,且
证明:
![]()
【解析】第一问中,利用
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
第二问中,
![]()
进一步得到得
即![]()
即
是等差数列.
然后结合公式求解。
解:(I) 解法二、
,![]()
∴数列{
}是以首项a1+1,公比为2的等比数列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差数列.
![]()
![]()
![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com