题目列表(包括答案和解析)
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
![]()
【解析】(Ⅰ)因为![]()
又
是平面PAC内的两条相较直线,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直线PD和平面PAC所成的角,从而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因为四边形ABCD为等腰梯形,
,所以
均为等腰直角三角形,从而梯形ABCD的高为
于是梯形ABCD面积
在等腰三角形AOD中,![]()
所以![]()
故四棱锥
的体积为
.
![]()
【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD
平面PAC即可,第二问由(Ⅰ)知,BD
平面PAC,所以
是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由
算得体积
在多面体和旋转体中的有关计算通常转化为平面图形(三角形或特殊的四边形)来计算.对于棱锥中的计算问题往往要构造直角三角形,即棱锥的高、斜高以及斜高在底面上的射影构成的直角三角形,或者由棱锥的高、侧棱以及侧棱在底面上的射影构成的三角形,对于棱台往往要构造直角梯形和直角三角形;在旋转体中通常要过旋转轴作截面得到直角三角形、矩形或等腰梯形.试解决下列问题:
圆台上底的面积为16πcm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积是多少?
| 2 |
如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:![]()
(1)
·
.
(2)EG的长.
(3)异面直线EG与AC所成角的大小.
如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F、G分别是AB、AD、CD的中点,计算:![]()
(1)
·
;
(2)
·
;
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com