4. 思路点拨 (1)在解题过程中.应注意分清要求的是底面积还是表面积. (2)将空间图形问题转化为平面图形问题.是立体几何中最基本的.也是最常用的方法. 查看更多

 

题目列表(包括答案和解析)

(1)列举法:把集合中的元素     出来,写在     内表示集合的方法.列举法表示集合的特点是清晰、直观.集合中元素的个数较少时常适用于列举法.?

(2)描述法:把集合中的元素     的描述出来,写在     内表示集合的方法.一般形式是{x|p},其中竖线前面的x叫做此集合的代表元素,竖线后面的p指出元素x所具有的公共属性.描述法便于从整体上把握一个集合,常适用于集合中元素的公共属性较为明显时.

(3)韦恩图:为了形象地表示集合,有时常用一些封闭的     表示一个集合,这样的图形称为韦恩图,在解题时,利用韦恩图“数”和“形”结合,使得解答十分直观.?

如集合A={abc}可形象地表示为图(1)或图(2).?

                        (1)                  (2)

查看答案和解析>>

鸡兔同笼

  你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

  你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

  解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.

  这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.

  化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.

1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.

2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?

查看答案和解析>>

复平面上有圆C:|z|=2,已知
z1-1
z1+1
(z1≠-1)是纯虚数,则复数z1的对应点P(  )

查看答案和解析>>

由tanα=t得sinα=±
t
1+t2
其符号是(  )
A、当α在一、二象限取正,在三、四象限取负
B、当α在一、四象限取正,在二、三象限取负
C、在α在一、三象限取正,在二、四象限取负
D、当α仅在第一象取取正

查看答案和解析>>

(2013•房山区二模)执行如图所示的程序框图.则输出的所有点(x,y)(  )

查看答案和解析>>


同步练习册答案