1. 证明等式 例1 若.且.求证:. 证明:由已知条件可知. 点在直线上. 原点到直线的距离不大于.即. 整理.得.即. 查看更多

 

题目列表(包括答案和解析)

(理)(1)证明:若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,则数列{an}是以A为公比的等比数列;

(2)若数列{an}对于任意的n∈N*都有Sn=2an-n,令f(x)=a1x+a2x2+…+anxn,求函数f(x)在x=1处的导数.

(文)设数列{an}的前n项和为Sn,已知对于任意的n∈N*,都有Sn=2an-n.

(1)求数列{an}的首项a1及递推关系式:an+1=f(an);

(2)先阅读下面的定理:“若数列{an}有递推关系an+1=Aan+B,其中A、B为常数,且A≠1,B≠0,

则数列{an}是以A为公比的等比数列”.请你在(1)的基础上应用本定理,求数列{an}的通项公式;

(3)求数列{an}的前n项和Sn

查看答案和解析>>

已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列的前项和分别为)。

(1)若,求的最大值;

(2)若,数列的公差为3,试问在数列中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由.

(3)若,数列的公差为3,且.

试证明:.

 

查看答案和解析>>

已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列的前项和分别为)。
(1)若,求的最大值;
(2)若,数列的公差为3,试问在数列中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由.
(3)若,数列的公差为3,且.
试证明:.

查看答案和解析>>

已知,且(e为自然对数的底数).
(1)求a与b的关系;
(2)若f(x)在其定义域内为增函数,求a的取值范围;
(3)证明:
(提示:需要时可利用恒等式:lnx≤x-1)

查看答案和解析>>

已知,且(e为自然对数的底数).
(1)求a与b的关系;
(2)若f(x)在其定义域内为增函数,求a的取值范围;
(3)证明:
(提示:需要时可利用恒等式:lnx≤x-1)

查看答案和解析>>


同步练习册答案