题目列表(包括答案和解析)
本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
若实数
、
、
满足
,则称
比
接近
.
(1)若
比3接近0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
接近
;
(3)已知函数
的定义域
.任取
,
等于
和
中接近0的那个值.写出函数
的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
(本题满分分)本题共有小题,第小题满分分,第小题满分分,第小已知函数
,
、
是
图像上两点.
(1)若
,求证:
为定值;
(2)设
,其中
且
,求
关于
的解析式;
(3)对(2)中的
,设数列
满足
,当
时,
,问是否存在角
,使不等式
…
对一切
都成立?若存在,求出角
的取值范围;若不存在,请说明理由.
把函数
的图象按向量
平移得到函数
的图象.
(1)求函数
的解析式; (2)若
,证明:
.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
,便可以得到结论。第二问中,令
,然后求导,利用最小值大于零得到。
(1)解:设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 证明:令
,……6分
则
……8分
,∴
,∴
在
上单调递增.……10分
故
,即![]()
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
已知各项都不为零的数列
的前n项和为
,
,向量
,其中
N*,且
∥
.
(Ⅰ)求数列
的通项公式及
;
(Ⅱ)若数列
的前n项和为
,且
(其中
是首项
,第四项为
的等比数列的公比),求证:
.
【解析】本试题主要考查了数列的通项公式和前n项和公式的运用。
(1)因为
,对n=1,
分别求解通项公式,然后合并。利用
,求解![]()
(2)利用
![]()
裂项后求和得到结论。
解:(1)
……1分
当
时,
……2分
(
)……5分
……7分
……9分
证明:当
时,
![]()
当
时,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com